MarineNAVIGATION
Piloting
Doubled angle fix
The Doubled angle on the bow fix resembles a running fix though only one navigation aid is used. a = 30° , b = 60°
Four point fix
If the first angle on the bow is 45°, a special situation occurs: The Four point fix, so called since 45 degrees equals 4 points on the compass (1 point = 11,25°).
a = 45° , b = 90°
Special angle fix
The Special angle fix requires the mariner to know some special pairs of angles (a : b) that give the distance travelled between bearings as equal to the distance abeam. 25 : 41 32 : 59 37 : 72 40 : 79 Remember: the greater the angular spread the better. Hence, of these three fixes the four point fix is the most precise one.
Distance of the horizonOn a flat world there would be no difference between the visible and sensible horizon. However, on Earth the visible horizon appears several arc minutes below the sensible horizon due to two opposing effects:
Atmospheric refraction bends light rays passing along the earth's surface toward the earth. Therefore, the geometrical horizon appears elevated, forming the visible horizon.
Dipping range
If an object is observed to be just rising above or just dipping below the visible horizon, its distance can be readily calculated using a simple formula.
The object's elevation (the height of a light above chart datum) can be found in the chart or other nautical publication such as the 'List of Lights'. Note that in some charts elevation is referred to a different datum than soundings. Click on the image on the right to view a magnificent lighthouse.
Use the dipping range to plot a Distance LOP in the chart: a circle equal in radius to the measured distance, which is plotted about the navigation aid. Finally, take a bearing on the object to get a second LOP and a position fix.
Vertical sextant angle
Similarly, a distance LOP can be obtained by using a sextant to measure the angle (arc) between for instance the light and chart datum of a lighthouse or any other structure of known elevation.
Once the angle is corrected for index error the distance can be found in a table called: "Distances by Vertical Sextant Angle", which is based on the following equation.
Together with a compass bearing one object with known elevation results in a position fix. If more than one vertical sextant angles are combined the optimum angular spread should be maintained.
Often, the correction for water height can be left out. Though, realizing that the horizon is closer than one might think, another correction is sometimes needed.
In the Mediterranean Sea for example we can see mountain tops with bases lying well beyond the horizon. Mutatis mutandis, the structures, which they bear have bases beyond the horizon as well.
This is the equation for finding the distance of an object of known elevation located beyond the horizon.
In the denominator of this equation a compensating factor is included by which the measured angle should be reduced.
Estimation of distanceThe most obvious way to estimate distances is of course by using the distance between our eyes. If we sight over our thumb first with one eye then with the other, the thumb moves across the background, perhaps first crossing a tower second crossing a bridge.
The chart might tell that these structures are 300 m apart.
Estimation with horizon
The image on the right shows us that it is possible to estimate the height of any object that crosses the horizon as seen from our own point of view. This picture of the 'Pigeon Rocks' near Beirut harbour was taken from a crow's nest at a height of 34 meters.
Factum: All tops crossing the horizon and with bases at sea level are on eye level.
Furthermore, if we see these rocks over a vertical angle of for example 7° = 0.1225 rad., then the range is 34/0.1225 = 277 meters.
Fix by depth soundingsA series of depth soundings - in this example every 10 minutes - can greatly improve your position fix:
Overview
Line Of Position (LOP): The locus of points along which a ship's position must lie. A minimum of two LOP's are necessary to establish a fix. It is standard practice to use at least three LOP's when obtaining a fix, to guard against the possibility of and, in some cases, remove ambiguity.
Double angle on the bow: A method of obtaining a running fix by measuring the distance a vessel travels on a steady course while the relative bearing (right or left) of a fixed object doubles. The distance from the object at the time of the second bearing is equal to the run between bearings, neglecting drift. Four point fix: A special case of doubling the angle on the bow, in which the first bearing is 45° right or left of the bow. Due to angular spread this is the most precise isosceles fix. Special angle fix: A construction using special pairs of relative angles that give the distance travelled between bearings as equal to the navigation aids' range abeam. Distance from horizon: The distance measured along the line of sight from a position above the surface of the earth to the visible horizon. Sensible horizon: The circle of the celestial sphere formed by the intersection of the celestial sphere and a plane thought the eye of the observer, and perpendicular to the zenith-nadir line. Visible horizon: The line where Earth and sky appear to meet. If there were no terrestrial refraction, visible and geometrical horizons would coincide. Also called : apparent horizon. Geometrical horizon: Originally, the celestial horizon; now more commonly the intersection of the celestial sphere and an infinite number of straight lines tangent to the earth's surface and radiating from the eye of the observer. Dipping range or Geographic range: The maximum distance at which the curvature of the earth and terrestrial refraction permit an aid to navigation to be seen from a particular height of eye (without regard to the luminous intensity of the light). Elevation: The height of the light above its chart datum in contrast to the height of the structure itself. Chart Datum: Officially: Chart Sounding Datum: An arbitrary reference plane to which both heights of tides and water depths are expressed on a chart. In the same chart heights can be related to other datums than depths. Vertical sextant angle: The method of using the subtended angle of a vertical object to find its range. Index error: In a marine sextant the index error is primarily due to lack of parallelism of the index mirror and the horizon glass at zero reading. A positive index error is subtracted and a negative index error is added. Estimation with horizon: Estimation of heights using the horizon: All tops crossing the horizon and with bases at sea level are on eye level. Estimation with depth effect: . Estimated position with soundings: . |